Exercise 11

Let S be the sphere of radius R centered at the origin. Find the equation for S in cylindrical coordinates.

Solution

The equation for a sphere is given by

$$
x^{2}+y^{2}+z^{2}=R^{2} .
$$

Substitute $x=r \cos \theta, y=r \sin \theta$, and $z=z$ to get the equation in cylindrical coordinates.

$$
\begin{gathered}
(r \cos \theta)^{2}+(r \sin \theta)^{2}+z^{2}=R^{2} \\
r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta+z^{2}=R^{2} \\
r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+z^{2}=R^{2} \\
r^{2}+z^{2}=R^{2}
\end{gathered}
$$

